deepseek.ts
7.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"use client";
// azure and openai, using same models. so using same LLMApi.
import { ApiPath, DEEPSEEK_BASE_URL, DeepSeek } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { streamWithThink } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
getTimeoutMSByModel,
} from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class DeepSeekApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.deepseekUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath.DeepSeek;
baseUrl = isApp ? DEEPSEEK_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.DeepSeek)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
if (v.role === "assistant") {
const content = getMessageTextContentWithoutThinking(v);
messages.push({ role: v.role, content });
} else {
const content = getMessageTextContent(v);
messages.push({ role: v.role, content });
}
}
// 检测并修复消息顺序,确保除system外的第一个消息是user
const filteredMessages: ChatOptions["messages"] = [];
let hasFoundFirstUser = false;
for (const msg of messages) {
if (msg.role === "system") {
// Keep all system messages
filteredMessages.push(msg);
} else if (msg.role === "user") {
// User message directly added
filteredMessages.push(msg);
hasFoundFirstUser = true;
} else if (hasFoundFirstUser) {
// After finding the first user message, all subsequent non-system messages are retained.
filteredMessages.push(msg);
}
// If hasFoundFirstUser is false and it is not a system message, it will be skipped.
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages: filteredMessages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(DeepSeek.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return streamWithThink(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string | null;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
const reasoning = choices[0]?.delta?.reasoning_content;
const content = choices[0]?.delta?.content;
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
content: "",
};
}
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}